Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Since 1980, atmospheric pollutants in South Asia and India have dramatically increased in response to industrialization and agricultural development, enhancing the atmospheric deposition of anthropogenic nitrogen in the northern Indian Ocean and potentially promoting primary productivity. Concurrently, ocean warming has increased stratification and limited the supply of nutrients supporting primary productivity. Here, we examine the biogeochemical consequences of increasing anthropogenic atmospheric nitrogen deposition and contrast them with the counteracting effect of warming, using a regional ocean biogeochemical model of the northern Indian Ocean forced with atmospheric nitrogen deposition derived from an Earth System Model. Our results suggest that the 60% recent increase in anthropogenic nitrogen deposition over the northern Indian Ocean provided external reactive nitrogen that only weakly enhanced primary production (+10 mg C.m–2.d–1.yr–1in regions of intense deposition) and secondary production (+4 mg C.m–2.d–1.yr–1). However, we find that locally this enhancement can significantly offset the declining trend in primary production over the last four decades in the central Arabian Sea and western Bay of Bengal, whose magnitude are up to -20 and -10 mg C.m–2.d–1.yr–1respectively.more » « lessFree, publicly-accessible full text available December 26, 2025
-
Abstract Understanding the interplay of ocean physics and biology at the submesoscale and below (<30 km) is an ongoing challenge in oceanography. While poorly constrained, these scales may be of critical importance for understanding how changing ocean dynamics will impact marine ecosystems. Fronts in the ocean, regions where two disparate water masses meet and isopycnals become tilted toward vertical, are considered hotspots for biophysical interaction, but there is limited observational evidence at the appropriate scales to assess their importance. Fronts around western boundary currents like the Gulf Stream are of particular interest as these dynamic physical regions are thought to influence both productivity and composition of primary producers; however, how exactly this plays out is not well known. Using satellite data and 2 years of in situ observations across the Gulf Stream front near Cape Hatteras, North Carolina, we investigate how submesoscale frontal dynamics could affect biological communities and generate hotspots of productivity and export. We assess the seasonality and phenology of the region, generalize the kilometer‐scale structure of the front, and analyze 69 transects to assess two physical processes of potential biogeochemical importance: cold shelf filament subduction and high salinity Sargasso Sea obduction. We link these processes observationally to meanders in the Gulf Stream and discuss how cold filament subduction could be exporting carbon and how obduction of high salinity water from depth is connected with high chlorophyll‐a. Finally, we report on phytoplankton community composition in each of these features and integrate these observations into our understanding of frontal submesoscale dynamics.more » « less
An official website of the United States government
